Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Wavelets, Multiresolution & Information Processing ; 21(3):1-26, 2023.
Article in English | Academic Search Complete | ID: covidwho-2262543

ABSTRACT

The outbreak of the global COVID-19 pandemic has become a public crisis and is threatening human life in every country. Recently, researchers have developed testing methods via patients cough recordings. In order to improve the testing accuracy, in this paper, we establish a novel COVID-19 sound-based diagnosis framework, i.e. TFA-CLSTMNN, which integrates time-frequency domain features of the recorded cough with the Attention-Convolution Long Short-Term Memory Neural Network. Specifically, we calculate the Mel-frequency cepstrum coefficient (MFCC) of the cough data to extract the time-frequency domain features. We then apply the convolutional neural network and the attentional mechanism on the time-frequency features, which is followed by the long short-term memory neural network to analyze the MFCC features of the data. The recognition and classification can be then carried out to evaluate the positiveness or negativeness of the tested samples. Experimental results show that the proposed TFA-CLSTMNN framework outperforms the baseline neural networks in sound-based COVID-19 diagnosis and derives an accuracy over 0.95 on the public real-world datasets. [ FROM AUTHOR] Copyright of International Journal of Wavelets, Multiresolution & Information Processing is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
IEEE Open J Eng Med Biol ; 2: 97-103, 2021.
Article in English | MEDLINE | ID: covidwho-1599482

ABSTRACT

The Covid-19 pandemic is still spreading around the world and seriously imperils humankind's health. This swift spread has caused the public to panic and look to scientists for answers. Fortunately, these scientists already have a wealth of data-the Covid-19 reports that each country releases, reports with valuable spatial-temporal properties. These data point toward some key actions that humans can take in their fight against Covid-19. Technically, the Covid-19 records can be described as sequences, which represent spatial-temporal linkages among the data elements with graph structure. Therefore, we propose a novel framework, the Interaction-Temporal Graph Convolution Network (IT-GCN), to analyze pandemic data. Specifically, IT-GCN introduces ARIMA into GCN to model the data which originate on nodes in a graph, indicating the severity of the pandemic in different cities. Instead of regular spatial topology, we construct the graph nodes with the vectors via ARIMA parameterization to find out the interaction topology underlying in the pandemic data. Experimental results show that IT-GCN is able to capture the comprehensive interaction-temporal topology and achieve well-performed short-term prediction of the Covid-19 daily infected cases in the United States. Our framework outperforms state-of-art baselines in terms of MAE, RMSE and MAPE. We believe that IT-GCN is a valid and reasonable method to forecast the Covid-19 daily infected cases and other related time-series. Moreover, the prediction can assist in improving containment policies.

SELECTION OF CITATIONS
SEARCH DETAIL